123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244 |
- /**
- * Copyright (c) 2013-present, Facebook, Inc.
- *
- * This source code is licensed under the MIT license found in the
- * LICENSE file in the root directory of this source tree.
- *
- * @providesModule PrefixIntervalTree
- * @flow
- * @typechecks
- */
- 'use strict';
- const invariant = require("./invariant");
- const parent = node => Math.floor(node / 2);
- const Int32Array = global.Int32Array || function (size: number): Array<number> {
- const xs = [];
- for (let i = size - 1; i >= 0; --i) {
- xs[i] = 0;
- }
- return xs;
- };
- /**
- * Computes the next power of 2 after or equal to x.
- */
- function ceilLog2(x: number): number {
- let y = 1;
- while (y < x) {
- y *= 2;
- }
- return y;
- }
- /**
- * A prefix interval tree stores an numeric array and the partial sums of that
- * array. It is optimized for updating the values of the array without
- * recomputing all of the partial sums.
- *
- * - O(ln n) update
- * - O(1) lookup
- * - O(ln n) compute a partial sum
- * - O(n) space
- *
- * Note that the sequence of partial sums is one longer than the array, so that
- * the first partial sum is always 0, and the last partial sum is the sum of the
- * entire array.
- */
- class PrefixIntervalTree {
- /**
- * Number of elements in the array
- */
- _size: number;
- /**
- * Half the size of the heap. It is also the number of non-leaf nodes, and the
- * index of the first element in the heap. Always a power of 2.
- */
- _half: number;
- /**
- * Binary heap
- */
- _heap: Int32Array;
- constructor(xs: Array<number>) {
- this._size = xs.length;
- this._half = ceilLog2(this._size);
- this._heap = new Int32Array(2 * this._half);
- let i;
- for (i = 0; i < this._size; ++i) {
- this._heap[this._half + i] = xs[i];
- }
- for (i = this._half - 1; i > 0; --i) {
- this._heap[i] = this._heap[2 * i] + this._heap[2 * i + 1];
- }
- }
- static uniform(size: number, initialValue: number): PrefixIntervalTree {
- const xs = [];
- for (let i = size - 1; i >= 0; --i) {
- xs[i] = initialValue;
- }
- return new PrefixIntervalTree(xs);
- }
- static empty(size: number): PrefixIntervalTree {
- return PrefixIntervalTree.uniform(size, 0);
- }
- set(index: number, value: number): void {
- invariant(0 <= index && index < this._size, 'Index out of range %s', index);
- let node = this._half + index;
- this._heap[node] = value;
- node = parent(node);
- for (; node !== 0; node = parent(node)) {
- this._heap[node] = this._heap[2 * node] + this._heap[2 * node + 1];
- }
- }
- get(index: number): number {
- invariant(0 <= index && index < this._size, 'Index out of range %s', index);
- const node = this._half + index;
- return this._heap[node];
- }
- getSize(): number {
- return this._size;
- }
- /**
- * Returns the sum get(0) + get(1) + ... + get(end - 1).
- */
- sumUntil(end: number): number {
- invariant(0 <= end && end < this._size + 1, 'Index out of range %s', end);
- if (end === 0) {
- return 0;
- }
- let node = this._half + end - 1;
- let sum = this._heap[node];
- for (; node !== 1; node = parent(node)) {
- if (node % 2 === 1) {
- sum += this._heap[node - 1];
- }
- }
- return sum;
- }
- /**
- * Returns the sum get(0) + get(1) + ... + get(inclusiveEnd).
- */
- sumTo(inclusiveEnd: number): number {
- invariant(0 <= inclusiveEnd && inclusiveEnd < this._size, 'Index out of range %s', inclusiveEnd);
- return this.sumUntil(inclusiveEnd + 1);
- }
- /**
- * Returns the sum get(begin) + get(begin + 1) + ... + get(end - 1).
- */
- sum(begin: number, end: number): number {
- invariant(begin <= end, 'Begin must precede end');
- return this.sumUntil(end) - this.sumUntil(begin);
- }
- /**
- * Returns the smallest i such that 0 <= i <= size and sumUntil(i) <= t, or
- * -1 if no such i exists.
- */
- greatestLowerBound(t: number): number {
- if (t < 0) {
- return -1;
- }
- let node = 1;
- if (this._heap[node] <= t) {
- return this._size;
- }
- while (node < this._half) {
- const leftSum = this._heap[2 * node];
- if (t < leftSum) {
- node = 2 * node;
- } else {
- node = 2 * node + 1;
- t -= leftSum;
- }
- }
- return node - this._half;
- }
- /**
- * Returns the smallest i such that 0 <= i <= size and sumUntil(i) < t, or
- * -1 if no such i exists.
- */
- greatestStrictLowerBound(t: number): number {
- if (t <= 0) {
- return -1;
- }
- let node = 1;
- if (this._heap[node] < t) {
- return this._size;
- }
- while (node < this._half) {
- const leftSum = this._heap[2 * node];
- if (t <= leftSum) {
- node = 2 * node;
- } else {
- node = 2 * node + 1;
- t -= leftSum;
- }
- }
- return node - this._half;
- }
- /**
- * Returns the smallest i such that 0 <= i <= size and t <= sumUntil(i), or
- * size + 1 if no such i exists.
- */
- leastUpperBound(t: number): number {
- return this.greatestStrictLowerBound(t) + 1;
- }
- /**
- * Returns the smallest i such that 0 <= i <= size and t < sumUntil(i), or
- * size + 1 if no such i exists.
- */
- leastStrictUpperBound(t: number): number {
- return this.greatestLowerBound(t) + 1;
- }
- }
- module.exports = PrefixIntervalTree;
|