123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef OPENCV_FEATURES_2D_HPP
- #define OPENCV_FEATURES_2D_HPP
- #include "opencv2/opencv_modules.hpp"
- #include "opencv2/core.hpp"
- #ifdef HAVE_OPENCV_FLANN
- #include "opencv2/flann/miniflann.hpp"
- #endif
- /**
- @defgroup features2d 2D Features Framework
- @{
- @defgroup features2d_main Feature Detection and Description
- @defgroup features2d_match Descriptor Matchers
- Matchers of keypoint descriptors in OpenCV have wrappers with a common interface that enables you to
- easily switch between different algorithms solving the same problem. This section is devoted to
- matching descriptors that are represented as vectors in a multidimensional space. All objects that
- implement vector descriptor matchers inherit the DescriptorMatcher interface.
- @note
- - An example explaining keypoint matching can be found at
- opencv_source_code/samples/cpp/descriptor_extractor_matcher.cpp
- - An example on descriptor matching evaluation can be found at
- opencv_source_code/samples/cpp/detector_descriptor_matcher_evaluation.cpp
- - An example on one to many image matching can be found at
- opencv_source_code/samples/cpp/matching_to_many_images.cpp
- @defgroup features2d_draw Drawing Function of Keypoints and Matches
- @defgroup features2d_category Object Categorization
- This section describes approaches based on local 2D features and used to categorize objects.
- @note
- - A complete Bag-Of-Words sample can be found at
- opencv_source_code/samples/cpp/bagofwords_classification.cpp
- - (Python) An example using the features2D framework to perform object categorization can be
- found at opencv_source_code/samples/python/find_obj.py
- @defgroup feature2d_hal Hardware Acceleration Layer
- @{
- @defgroup features2d_hal_interface Interface
- @}
- @}
- */
- namespace cv
- {
- //! @addtogroup features2d
- //! @{
- // //! writes vector of keypoints to the file storage
- // CV_EXPORTS void write(FileStorage& fs, const String& name, const std::vector<KeyPoint>& keypoints);
- // //! reads vector of keypoints from the specified file storage node
- // CV_EXPORTS void read(const FileNode& node, CV_OUT std::vector<KeyPoint>& keypoints);
- /** @brief A class filters a vector of keypoints.
- Because now it is difficult to provide a convenient interface for all usage scenarios of the
- keypoints filter class, it has only several needed by now static methods.
- */
- class CV_EXPORTS KeyPointsFilter
- {
- public:
- KeyPointsFilter(){}
- /*
- * Remove keypoints within borderPixels of an image edge.
- */
- static void runByImageBorder( std::vector<KeyPoint>& keypoints, Size imageSize, int borderSize );
- /*
- * Remove keypoints of sizes out of range.
- */
- static void runByKeypointSize( std::vector<KeyPoint>& keypoints, float minSize,
- float maxSize=FLT_MAX );
- /*
- * Remove keypoints from some image by mask for pixels of this image.
- */
- static void runByPixelsMask( std::vector<KeyPoint>& keypoints, const Mat& mask );
- /*
- * Remove duplicated keypoints.
- */
- static void removeDuplicated( std::vector<KeyPoint>& keypoints );
- /*
- * Remove duplicated keypoints and sort the remaining keypoints
- */
- static void removeDuplicatedSorted( std::vector<KeyPoint>& keypoints );
- /*
- * Retain the specified number of the best keypoints (according to the response)
- */
- static void retainBest( std::vector<KeyPoint>& keypoints, int npoints );
- };
- /************************************ Base Classes ************************************/
- /** @brief Abstract base class for 2D image feature detectors and descriptor extractors
- */
- #ifdef __EMSCRIPTEN__
- class CV_EXPORTS_W Feature2D : public Algorithm
- #else
- class CV_EXPORTS_W Feature2D : public virtual Algorithm
- #endif
- {
- public:
- virtual ~Feature2D();
- /** @brief Detects keypoints in an image (first variant) or image set (second variant).
- @param image Image.
- @param keypoints The detected keypoints. In the second variant of the method keypoints[i] is a set
- of keypoints detected in images[i] .
- @param mask Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
- matrix with non-zero values in the region of interest.
- */
- CV_WRAP virtual void detect( InputArray image,
- CV_OUT std::vector<KeyPoint>& keypoints,
- InputArray mask=noArray() );
- /** @overload
- @param images Image set.
- @param keypoints The detected keypoints. In the second variant of the method keypoints[i] is a set
- of keypoints detected in images[i] .
- @param masks Masks for each input image specifying where to look for keypoints (optional).
- masks[i] is a mask for images[i].
- */
- CV_WRAP virtual void detect( InputArrayOfArrays images,
- CV_OUT std::vector<std::vector<KeyPoint> >& keypoints,
- InputArrayOfArrays masks=noArray() );
- /** @brief Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
- (second variant).
- @param image Image.
- @param keypoints Input collection of keypoints. Keypoints for which a descriptor cannot be
- computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
- with several dominant orientations (for each orientation).
- @param descriptors Computed descriptors. In the second variant of the method descriptors[i] are
- descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
- descriptor for keypoint j-th keypoint.
- */
- CV_WRAP virtual void compute( InputArray image,
- CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints,
- OutputArray descriptors );
- /** @overload
- @param images Image set.
- @param keypoints Input collection of keypoints. Keypoints for which a descriptor cannot be
- computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
- with several dominant orientations (for each orientation).
- @param descriptors Computed descriptors. In the second variant of the method descriptors[i] are
- descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
- descriptor for keypoint j-th keypoint.
- */
- CV_WRAP virtual void compute( InputArrayOfArrays images,
- CV_OUT CV_IN_OUT std::vector<std::vector<KeyPoint> >& keypoints,
- OutputArrayOfArrays descriptors );
- /** Detects keypoints and computes the descriptors */
- CV_WRAP virtual void detectAndCompute( InputArray image, InputArray mask,
- CV_OUT std::vector<KeyPoint>& keypoints,
- OutputArray descriptors,
- bool useProvidedKeypoints=false );
- CV_WRAP virtual int descriptorSize() const;
- CV_WRAP virtual int descriptorType() const;
- CV_WRAP virtual int defaultNorm() const;
- CV_WRAP void write( const String& fileName ) const;
- CV_WRAP void read( const String& fileName );
- virtual void write( FileStorage&) const CV_OVERRIDE;
- // see corresponding cv::Algorithm method
- CV_WRAP virtual void read( const FileNode&) CV_OVERRIDE;
- //! Return true if detector object is empty
- CV_WRAP virtual bool empty() const CV_OVERRIDE;
- CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
- // see corresponding cv::Algorithm method
- CV_WRAP inline void write(const Ptr<FileStorage>& fs, const String& name = String()) const { Algorithm::write(fs, name); }
- };
- /** Feature detectors in OpenCV have wrappers with a common interface that enables you to easily switch
- between different algorithms solving the same problem. All objects that implement keypoint detectors
- inherit the FeatureDetector interface. */
- typedef Feature2D FeatureDetector;
- /** Extractors of keypoint descriptors in OpenCV have wrappers with a common interface that enables you
- to easily switch between different algorithms solving the same problem. This section is devoted to
- computing descriptors represented as vectors in a multidimensional space. All objects that implement
- the vector descriptor extractors inherit the DescriptorExtractor interface.
- */
- typedef Feature2D DescriptorExtractor;
- //! @addtogroup features2d_main
- //! @{
- /** @brief Class implementing the BRISK keypoint detector and descriptor extractor, described in @cite LCS11 .
- */
- class CV_EXPORTS_W BRISK : public Feature2D
- {
- public:
- /** @brief The BRISK constructor
- @param thresh AGAST detection threshold score.
- @param octaves detection octaves. Use 0 to do single scale.
- @param patternScale apply this scale to the pattern used for sampling the neighbourhood of a
- keypoint.
- */
- CV_WRAP static Ptr<BRISK> create(int thresh=30, int octaves=3, float patternScale=1.0f);
- /** @brief The BRISK constructor for a custom pattern
- @param radiusList defines the radii (in pixels) where the samples around a keypoint are taken (for
- keypoint scale 1).
- @param numberList defines the number of sampling points on the sampling circle. Must be the same
- size as radiusList..
- @param dMax threshold for the short pairings used for descriptor formation (in pixels for keypoint
- scale 1).
- @param dMin threshold for the long pairings used for orientation determination (in pixels for
- keypoint scale 1).
- @param indexChange index remapping of the bits. */
- CV_WRAP static Ptr<BRISK> create(const std::vector<float> &radiusList, const std::vector<int> &numberList,
- float dMax=5.85f, float dMin=8.2f, const std::vector<int>& indexChange=std::vector<int>());
- /** @brief The BRISK constructor for a custom pattern, detection threshold and octaves
- @param thresh AGAST detection threshold score.
- @param octaves detection octaves. Use 0 to do single scale.
- @param radiusList defines the radii (in pixels) where the samples around a keypoint are taken (for
- keypoint scale 1).
- @param numberList defines the number of sampling points on the sampling circle. Must be the same
- size as radiusList..
- @param dMax threshold for the short pairings used for descriptor formation (in pixels for keypoint
- scale 1).
- @param dMin threshold for the long pairings used for orientation determination (in pixels for
- keypoint scale 1).
- @param indexChange index remapping of the bits. */
- CV_WRAP static Ptr<BRISK> create(int thresh, int octaves, const std::vector<float> &radiusList,
- const std::vector<int> &numberList, float dMax=5.85f, float dMin=8.2f,
- const std::vector<int>& indexChange=std::vector<int>());
- CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
- /** @brief Set detection threshold.
- @param threshold AGAST detection threshold score.
- */
- CV_WRAP virtual void setThreshold(int threshold) { CV_UNUSED(threshold); return; }
- CV_WRAP virtual int getThreshold() const { return -1; }
- /** @brief Set detection octaves.
- @param octaves detection octaves. Use 0 to do single scale.
- */
- CV_WRAP virtual void setOctaves(int octaves) { CV_UNUSED(octaves); return; }
- CV_WRAP virtual int getOctaves() const { return -1; }
- };
- /** @brief Class implementing the ORB (*oriented BRIEF*) keypoint detector and descriptor extractor
- described in @cite RRKB11 . The algorithm uses FAST in pyramids to detect stable keypoints, selects
- the strongest features using FAST or Harris response, finds their orientation using first-order
- moments and computes the descriptors using BRIEF (where the coordinates of random point pairs (or
- k-tuples) are rotated according to the measured orientation).
- */
- class CV_EXPORTS_W ORB : public Feature2D
- {
- public:
- enum ScoreType { HARRIS_SCORE=0, FAST_SCORE=1 };
- static const int kBytes = 32;
- /** @brief The ORB constructor
- @param nfeatures The maximum number of features to retain.
- @param scaleFactor Pyramid decimation ratio, greater than 1. scaleFactor==2 means the classical
- pyramid, where each next level has 4x less pixels than the previous, but such a big scale factor
- will degrade feature matching scores dramatically. On the other hand, too close to 1 scale factor
- will mean that to cover certain scale range you will need more pyramid levels and so the speed
- will suffer.
- @param nlevels The number of pyramid levels. The smallest level will have linear size equal to
- input_image_linear_size/pow(scaleFactor, nlevels - firstLevel).
- @param edgeThreshold This is size of the border where the features are not detected. It should
- roughly match the patchSize parameter.
- @param firstLevel The level of pyramid to put source image to. Previous layers are filled
- with upscaled source image.
- @param WTA_K The number of points that produce each element of the oriented BRIEF descriptor. The
- default value 2 means the BRIEF where we take a random point pair and compare their brightnesses,
- so we get 0/1 response. Other possible values are 3 and 4. For example, 3 means that we take 3
- random points (of course, those point coordinates are random, but they are generated from the
- pre-defined seed, so each element of BRIEF descriptor is computed deterministically from the pixel
- rectangle), find point of maximum brightness and output index of the winner (0, 1 or 2). Such
- output will occupy 2 bits, and therefore it will need a special variant of Hamming distance,
- denoted as NORM_HAMMING2 (2 bits per bin). When WTA_K=4, we take 4 random points to compute each
- bin (that will also occupy 2 bits with possible values 0, 1, 2 or 3).
- @param scoreType The default HARRIS_SCORE means that Harris algorithm is used to rank features
- (the score is written to KeyPoint::score and is used to retain best nfeatures features);
- FAST_SCORE is alternative value of the parameter that produces slightly less stable keypoints,
- but it is a little faster to compute.
- @param patchSize size of the patch used by the oriented BRIEF descriptor. Of course, on smaller
- pyramid layers the perceived image area covered by a feature will be larger.
- @param fastThreshold the fast threshold
- */
- CV_WRAP static Ptr<ORB> create(int nfeatures=500, float scaleFactor=1.2f, int nlevels=8, int edgeThreshold=31,
- int firstLevel=0, int WTA_K=2, ORB::ScoreType scoreType=ORB::HARRIS_SCORE, int patchSize=31, int fastThreshold=20);
- CV_WRAP virtual void setMaxFeatures(int maxFeatures) = 0;
- CV_WRAP virtual int getMaxFeatures() const = 0;
- CV_WRAP virtual void setScaleFactor(double scaleFactor) = 0;
- CV_WRAP virtual double getScaleFactor() const = 0;
- CV_WRAP virtual void setNLevels(int nlevels) = 0;
- CV_WRAP virtual int getNLevels() const = 0;
- CV_WRAP virtual void setEdgeThreshold(int edgeThreshold) = 0;
- CV_WRAP virtual int getEdgeThreshold() const = 0;
- CV_WRAP virtual void setFirstLevel(int firstLevel) = 0;
- CV_WRAP virtual int getFirstLevel() const = 0;
- CV_WRAP virtual void setWTA_K(int wta_k) = 0;
- CV_WRAP virtual int getWTA_K() const = 0;
- CV_WRAP virtual void setScoreType(ORB::ScoreType scoreType) = 0;
- CV_WRAP virtual ORB::ScoreType getScoreType() const = 0;
- CV_WRAP virtual void setPatchSize(int patchSize) = 0;
- CV_WRAP virtual int getPatchSize() const = 0;
- CV_WRAP virtual void setFastThreshold(int fastThreshold) = 0;
- CV_WRAP virtual int getFastThreshold() const = 0;
- CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
- };
- /** @brief Maximally stable extremal region extractor
- The class encapsulates all the parameters of the %MSER extraction algorithm (see [wiki
- article](http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions)).
- - there are two different implementation of %MSER: one for grey image, one for color image
- - the grey image algorithm is taken from: @cite nister2008linear ; the paper claims to be faster
- than union-find method; it actually get 1.5~2m/s on my centrino L7200 1.2GHz laptop.
- - the color image algorithm is taken from: @cite forssen2007maximally ; it should be much slower
- than grey image method ( 3~4 times ); the chi_table.h file is taken directly from paper's source
- code which is distributed under GPL.
- - (Python) A complete example showing the use of the %MSER detector can be found at samples/python/mser.py
- */
- class CV_EXPORTS_W MSER : public Feature2D
- {
- public:
- /** @brief Full constructor for %MSER detector
- @param _delta it compares \f$(size_{i}-size_{i-delta})/size_{i-delta}\f$
- @param _min_area prune the area which smaller than minArea
- @param _max_area prune the area which bigger than maxArea
- @param _max_variation prune the area have similar size to its children
- @param _min_diversity for color image, trace back to cut off mser with diversity less than min_diversity
- @param _max_evolution for color image, the evolution steps
- @param _area_threshold for color image, the area threshold to cause re-initialize
- @param _min_margin for color image, ignore too small margin
- @param _edge_blur_size for color image, the aperture size for edge blur
- */
- CV_WRAP static Ptr<MSER> create( int _delta=5, int _min_area=60, int _max_area=14400,
- double _max_variation=0.25, double _min_diversity=.2,
- int _max_evolution=200, double _area_threshold=1.01,
- double _min_margin=0.003, int _edge_blur_size=5 );
- /** @brief Detect %MSER regions
- @param image input image (8UC1, 8UC3 or 8UC4, must be greater or equal than 3x3)
- @param msers resulting list of point sets
- @param bboxes resulting bounding boxes
- */
- CV_WRAP virtual void detectRegions( InputArray image,
- CV_OUT std::vector<std::vector<Point> >& msers,
- CV_OUT std::vector<Rect>& bboxes ) = 0;
- CV_WRAP virtual void setDelta(int delta) = 0;
- CV_WRAP virtual int getDelta() const = 0;
- CV_WRAP virtual void setMinArea(int minArea) = 0;
- CV_WRAP virtual int getMinArea() const = 0;
- CV_WRAP virtual void setMaxArea(int maxArea) = 0;
- CV_WRAP virtual int getMaxArea() const = 0;
- CV_WRAP virtual void setPass2Only(bool f) = 0;
- CV_WRAP virtual bool getPass2Only() const = 0;
- CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
- };
- //! @} features2d_main
- //! @addtogroup features2d_main
- //! @{
- /** @brief Wrapping class for feature detection using the FAST method. :
- */
- class CV_EXPORTS_W FastFeatureDetector : public Feature2D
- {
- public:
- enum DetectorType
- {
- TYPE_5_8 = 0, TYPE_7_12 = 1, TYPE_9_16 = 2
- };
- enum
- {
- THRESHOLD = 10000, NONMAX_SUPPRESSION=10001, FAST_N=10002
- };
- CV_WRAP static Ptr<FastFeatureDetector> create( int threshold=10,
- bool nonmaxSuppression=true,
- FastFeatureDetector::DetectorType type=FastFeatureDetector::TYPE_9_16 );
- CV_WRAP virtual void setThreshold(int threshold) = 0;
- CV_WRAP virtual int getThreshold() const = 0;
- CV_WRAP virtual void setNonmaxSuppression(bool f) = 0;
- CV_WRAP virtual bool getNonmaxSuppression() const = 0;
- CV_WRAP virtual void setType(FastFeatureDetector::DetectorType type) = 0;
- CV_WRAP virtual FastFeatureDetector::DetectorType getType() const = 0;
- CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
- };
- /** @overload */
- CV_EXPORTS void FAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
- int threshold, bool nonmaxSuppression=true );
- /** @brief Detects corners using the FAST algorithm
- @param image grayscale image where keypoints (corners) are detected.
- @param keypoints keypoints detected on the image.
- @param threshold threshold on difference between intensity of the central pixel and pixels of a
- circle around this pixel.
- @param nonmaxSuppression if true, non-maximum suppression is applied to detected corners
- (keypoints).
- @param type one of the three neighborhoods as defined in the paper:
- FastFeatureDetector::TYPE_9_16, FastFeatureDetector::TYPE_7_12,
- FastFeatureDetector::TYPE_5_8
- Detects corners using the FAST algorithm by @cite Rosten06 .
- @note In Python API, types are given as cv.FAST_FEATURE_DETECTOR_TYPE_5_8,
- cv.FAST_FEATURE_DETECTOR_TYPE_7_12 and cv.FAST_FEATURE_DETECTOR_TYPE_9_16. For corner
- detection, use cv.FAST.detect() method.
- */
- CV_EXPORTS void FAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
- int threshold, bool nonmaxSuppression, FastFeatureDetector::DetectorType type );
- //! @} features2d_main
- //! @addtogroup features2d_main
- //! @{
- /** @brief Wrapping class for feature detection using the AGAST method. :
- */
- class CV_EXPORTS_W AgastFeatureDetector : public Feature2D
- {
- public:
- enum DetectorType
- {
- AGAST_5_8 = 0, AGAST_7_12d = 1, AGAST_7_12s = 2, OAST_9_16 = 3,
- };
- enum
- {
- THRESHOLD = 10000, NONMAX_SUPPRESSION = 10001,
- };
- CV_WRAP static Ptr<AgastFeatureDetector> create( int threshold=10,
- bool nonmaxSuppression=true,
- AgastFeatureDetector::DetectorType type = AgastFeatureDetector::OAST_9_16);
- CV_WRAP virtual void setThreshold(int threshold) = 0;
- CV_WRAP virtual int getThreshold() const = 0;
- CV_WRAP virtual void setNonmaxSuppression(bool f) = 0;
- CV_WRAP virtual bool getNonmaxSuppression() const = 0;
- CV_WRAP virtual void setType(AgastFeatureDetector::DetectorType type) = 0;
- CV_WRAP virtual AgastFeatureDetector::DetectorType getType() const = 0;
- CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
- };
- /** @overload */
- CV_EXPORTS void AGAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
- int threshold, bool nonmaxSuppression=true );
- /** @brief Detects corners using the AGAST algorithm
- @param image grayscale image where keypoints (corners) are detected.
- @param keypoints keypoints detected on the image.
- @param threshold threshold on difference between intensity of the central pixel and pixels of a
- circle around this pixel.
- @param nonmaxSuppression if true, non-maximum suppression is applied to detected corners
- (keypoints).
- @param type one of the four neighborhoods as defined in the paper:
- AgastFeatureDetector::AGAST_5_8, AgastFeatureDetector::AGAST_7_12d,
- AgastFeatureDetector::AGAST_7_12s, AgastFeatureDetector::OAST_9_16
- For non-Intel platforms, there is a tree optimised variant of AGAST with same numerical results.
- The 32-bit binary tree tables were generated automatically from original code using perl script.
- The perl script and examples of tree generation are placed in features2d/doc folder.
- Detects corners using the AGAST algorithm by @cite mair2010_agast .
- */
- CV_EXPORTS void AGAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
- int threshold, bool nonmaxSuppression, AgastFeatureDetector::DetectorType type );
- /** @brief Wrapping class for feature detection using the goodFeaturesToTrack function. :
- */
- class CV_EXPORTS_W GFTTDetector : public Feature2D
- {
- public:
- CV_WRAP static Ptr<GFTTDetector> create( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1,
- int blockSize=3, bool useHarrisDetector=false, double k=0.04 );
- CV_WRAP static Ptr<GFTTDetector> create( int maxCorners, double qualityLevel, double minDistance,
- int blockSize, int gradiantSize, bool useHarrisDetector=false, double k=0.04 );
- CV_WRAP virtual void setMaxFeatures(int maxFeatures) = 0;
- CV_WRAP virtual int getMaxFeatures() const = 0;
- CV_WRAP virtual void setQualityLevel(double qlevel) = 0;
- CV_WRAP virtual double getQualityLevel() const = 0;
- CV_WRAP virtual void setMinDistance(double minDistance) = 0;
- CV_WRAP virtual double getMinDistance() const = 0;
- CV_WRAP virtual void setBlockSize(int blockSize) = 0;
- CV_WRAP virtual int getBlockSize() const = 0;
- CV_WRAP virtual void setHarrisDetector(bool val) = 0;
- CV_WRAP virtual bool getHarrisDetector() const = 0;
- CV_WRAP virtual void setK(double k) = 0;
- CV_WRAP virtual double getK() const = 0;
- CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
- };
- /** @brief Class for extracting blobs from an image. :
- The class implements a simple algorithm for extracting blobs from an image:
- 1. Convert the source image to binary images by applying thresholding with several thresholds from
- minThreshold (inclusive) to maxThreshold (exclusive) with distance thresholdStep between
- neighboring thresholds.
- 2. Extract connected components from every binary image by findContours and calculate their
- centers.
- 3. Group centers from several binary images by their coordinates. Close centers form one group that
- corresponds to one blob, which is controlled by the minDistBetweenBlobs parameter.
- 4. From the groups, estimate final centers of blobs and their radiuses and return as locations and
- sizes of keypoints.
- This class performs several filtrations of returned blobs. You should set filterBy\* to true/false
- to turn on/off corresponding filtration. Available filtrations:
- - **By color**. This filter compares the intensity of a binary image at the center of a blob to
- blobColor. If they differ, the blob is filtered out. Use blobColor = 0 to extract dark blobs
- and blobColor = 255 to extract light blobs.
- - **By area**. Extracted blobs have an area between minArea (inclusive) and maxArea (exclusive).
- - **By circularity**. Extracted blobs have circularity
- (\f$\frac{4*\pi*Area}{perimeter * perimeter}\f$) between minCircularity (inclusive) and
- maxCircularity (exclusive).
- - **By ratio of the minimum inertia to maximum inertia**. Extracted blobs have this ratio
- between minInertiaRatio (inclusive) and maxInertiaRatio (exclusive).
- - **By convexity**. Extracted blobs have convexity (area / area of blob convex hull) between
- minConvexity (inclusive) and maxConvexity (exclusive).
- Default values of parameters are tuned to extract dark circular blobs.
- */
- class CV_EXPORTS_W SimpleBlobDetector : public Feature2D
- {
- public:
- struct CV_EXPORTS_W_SIMPLE Params
- {
- CV_WRAP Params();
- CV_PROP_RW float thresholdStep;
- CV_PROP_RW float minThreshold;
- CV_PROP_RW float maxThreshold;
- CV_PROP_RW size_t minRepeatability;
- CV_PROP_RW float minDistBetweenBlobs;
- CV_PROP_RW bool filterByColor;
- CV_PROP_RW uchar blobColor;
- CV_PROP_RW bool filterByArea;
- CV_PROP_RW float minArea, maxArea;
- CV_PROP_RW bool filterByCircularity;
- CV_PROP_RW float minCircularity, maxCircularity;
- CV_PROP_RW bool filterByInertia;
- CV_PROP_RW float minInertiaRatio, maxInertiaRatio;
- CV_PROP_RW bool filterByConvexity;
- CV_PROP_RW float minConvexity, maxConvexity;
- void read( const FileNode& fn );
- void write( FileStorage& fs ) const;
- };
- CV_WRAP static Ptr<SimpleBlobDetector>
- create(const SimpleBlobDetector::Params ¶meters = SimpleBlobDetector::Params());
- CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
- };
- //! @} features2d_main
- //! @addtogroup features2d_main
- //! @{
- /** @brief Class implementing the KAZE keypoint detector and descriptor extractor, described in @cite ABD12 .
- @note AKAZE descriptor can only be used with KAZE or AKAZE keypoints .. [ABD12] KAZE Features. Pablo
- F. Alcantarilla, Adrien Bartoli and Andrew J. Davison. In European Conference on Computer Vision
- (ECCV), Fiorenze, Italy, October 2012.
- */
- class CV_EXPORTS_W KAZE : public Feature2D
- {
- public:
- enum DiffusivityType
- {
- DIFF_PM_G1 = 0,
- DIFF_PM_G2 = 1,
- DIFF_WEICKERT = 2,
- DIFF_CHARBONNIER = 3
- };
- /** @brief The KAZE constructor
- @param extended Set to enable extraction of extended (128-byte) descriptor.
- @param upright Set to enable use of upright descriptors (non rotation-invariant).
- @param threshold Detector response threshold to accept point
- @param nOctaves Maximum octave evolution of the image
- @param nOctaveLayers Default number of sublevels per scale level
- @param diffusivity Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or
- DIFF_CHARBONNIER
- */
- CV_WRAP static Ptr<KAZE> create(bool extended=false, bool upright=false,
- float threshold = 0.001f,
- int nOctaves = 4, int nOctaveLayers = 4,
- KAZE::DiffusivityType diffusivity = KAZE::DIFF_PM_G2);
- CV_WRAP virtual void setExtended(bool extended) = 0;
- CV_WRAP virtual bool getExtended() const = 0;
- CV_WRAP virtual void setUpright(bool upright) = 0;
- CV_WRAP virtual bool getUpright() const = 0;
- CV_WRAP virtual void setThreshold(double threshold) = 0;
- CV_WRAP virtual double getThreshold() const = 0;
- CV_WRAP virtual void setNOctaves(int octaves) = 0;
- CV_WRAP virtual int getNOctaves() const = 0;
- CV_WRAP virtual void setNOctaveLayers(int octaveLayers) = 0;
- CV_WRAP virtual int getNOctaveLayers() const = 0;
- CV_WRAP virtual void setDiffusivity(KAZE::DiffusivityType diff) = 0;
- CV_WRAP virtual KAZE::DiffusivityType getDiffusivity() const = 0;
- CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
- };
- /** @brief Class implementing the AKAZE keypoint detector and descriptor extractor, described in @cite ANB13.
- @details AKAZE descriptors can only be used with KAZE or AKAZE keypoints. This class is thread-safe.
- @note When you need descriptors use Feature2D::detectAndCompute, which
- provides better performance. When using Feature2D::detect followed by
- Feature2D::compute scale space pyramid is computed twice.
- @note AKAZE implements T-API. When image is passed as UMat some parts of the algorithm
- will use OpenCL.
- @note [ANB13] Fast Explicit Diffusion for Accelerated Features in Nonlinear
- Scale Spaces. Pablo F. Alcantarilla, Jesús Nuevo and Adrien Bartoli. In
- British Machine Vision Conference (BMVC), Bristol, UK, September 2013.
- */
- class CV_EXPORTS_W AKAZE : public Feature2D
- {
- public:
- // AKAZE descriptor type
- enum DescriptorType
- {
- DESCRIPTOR_KAZE_UPRIGHT = 2, ///< Upright descriptors, not invariant to rotation
- DESCRIPTOR_KAZE = 3,
- DESCRIPTOR_MLDB_UPRIGHT = 4, ///< Upright descriptors, not invariant to rotation
- DESCRIPTOR_MLDB = 5
- };
- /** @brief The AKAZE constructor
- @param descriptor_type Type of the extracted descriptor: DESCRIPTOR_KAZE,
- DESCRIPTOR_KAZE_UPRIGHT, DESCRIPTOR_MLDB or DESCRIPTOR_MLDB_UPRIGHT.
- @param descriptor_size Size of the descriptor in bits. 0 -\> Full size
- @param descriptor_channels Number of channels in the descriptor (1, 2, 3)
- @param threshold Detector response threshold to accept point
- @param nOctaves Maximum octave evolution of the image
- @param nOctaveLayers Default number of sublevels per scale level
- @param diffusivity Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or
- DIFF_CHARBONNIER
- */
- CV_WRAP static Ptr<AKAZE> create(AKAZE::DescriptorType descriptor_type = AKAZE::DESCRIPTOR_MLDB,
- int descriptor_size = 0, int descriptor_channels = 3,
- float threshold = 0.001f, int nOctaves = 4,
- int nOctaveLayers = 4, KAZE::DiffusivityType diffusivity = KAZE::DIFF_PM_G2);
- CV_WRAP virtual void setDescriptorType(AKAZE::DescriptorType dtype) = 0;
- CV_WRAP virtual AKAZE::DescriptorType getDescriptorType() const = 0;
- CV_WRAP virtual void setDescriptorSize(int dsize) = 0;
- CV_WRAP virtual int getDescriptorSize() const = 0;
- CV_WRAP virtual void setDescriptorChannels(int dch) = 0;
- CV_WRAP virtual int getDescriptorChannels() const = 0;
- CV_WRAP virtual void setThreshold(double threshold) = 0;
- CV_WRAP virtual double getThreshold() const = 0;
- CV_WRAP virtual void setNOctaves(int octaves) = 0;
- CV_WRAP virtual int getNOctaves() const = 0;
- CV_WRAP virtual void setNOctaveLayers(int octaveLayers) = 0;
- CV_WRAP virtual int getNOctaveLayers() const = 0;
- CV_WRAP virtual void setDiffusivity(KAZE::DiffusivityType diff) = 0;
- CV_WRAP virtual KAZE::DiffusivityType getDiffusivity() const = 0;
- CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
- };
- //! @} features2d_main
- /****************************************************************************************\
- * Distance *
- \****************************************************************************************/
- template<typename T>
- struct CV_EXPORTS Accumulator
- {
- typedef T Type;
- };
- template<> struct Accumulator<unsigned char> { typedef float Type; };
- template<> struct Accumulator<unsigned short> { typedef float Type; };
- template<> struct Accumulator<char> { typedef float Type; };
- template<> struct Accumulator<short> { typedef float Type; };
- /*
- * Squared Euclidean distance functor
- */
- template<class T>
- struct CV_EXPORTS SL2
- {
- static const NormTypes normType = NORM_L2SQR;
- typedef T ValueType;
- typedef typename Accumulator<T>::Type ResultType;
- ResultType operator()( const T* a, const T* b, int size ) const
- {
- return normL2Sqr<ValueType, ResultType>(a, b, size);
- }
- };
- /*
- * Euclidean distance functor
- */
- template<class T>
- struct L2
- {
- static const NormTypes normType = NORM_L2;
- typedef T ValueType;
- typedef typename Accumulator<T>::Type ResultType;
- ResultType operator()( const T* a, const T* b, int size ) const
- {
- return (ResultType)std::sqrt((double)normL2Sqr<ValueType, ResultType>(a, b, size));
- }
- };
- /*
- * Manhattan distance (city block distance) functor
- */
- template<class T>
- struct L1
- {
- static const NormTypes normType = NORM_L1;
- typedef T ValueType;
- typedef typename Accumulator<T>::Type ResultType;
- ResultType operator()( const T* a, const T* b, int size ) const
- {
- return normL1<ValueType, ResultType>(a, b, size);
- }
- };
- /****************************************************************************************\
- * DescriptorMatcher *
- \****************************************************************************************/
- //! @addtogroup features2d_match
- //! @{
- /** @brief Abstract base class for matching keypoint descriptors.
- It has two groups of match methods: for matching descriptors of an image with another image or with
- an image set.
- */
- class CV_EXPORTS_W DescriptorMatcher : public Algorithm
- {
- public:
- enum MatcherType
- {
- FLANNBASED = 1,
- BRUTEFORCE = 2,
- BRUTEFORCE_L1 = 3,
- BRUTEFORCE_HAMMING = 4,
- BRUTEFORCE_HAMMINGLUT = 5,
- BRUTEFORCE_SL2 = 6
- };
- virtual ~DescriptorMatcher();
- /** @brief Adds descriptors to train a CPU(trainDescCollectionis) or GPU(utrainDescCollectionis) descriptor
- collection.
- If the collection is not empty, the new descriptors are added to existing train descriptors.
- @param descriptors Descriptors to add. Each descriptors[i] is a set of descriptors from the same
- train image.
- */
- CV_WRAP virtual void add( InputArrayOfArrays descriptors );
- /** @brief Returns a constant link to the train descriptor collection trainDescCollection .
- */
- CV_WRAP const std::vector<Mat>& getTrainDescriptors() const;
- /** @brief Clears the train descriptor collections.
- */
- CV_WRAP virtual void clear() CV_OVERRIDE;
- /** @brief Returns true if there are no train descriptors in the both collections.
- */
- CV_WRAP virtual bool empty() const CV_OVERRIDE;
- /** @brief Returns true if the descriptor matcher supports masking permissible matches.
- */
- CV_WRAP virtual bool isMaskSupported() const = 0;
- /** @brief Trains a descriptor matcher
- Trains a descriptor matcher (for example, the flann index). In all methods to match, the method
- train() is run every time before matching. Some descriptor matchers (for example, BruteForceMatcher)
- have an empty implementation of this method. Other matchers really train their inner structures (for
- example, FlannBasedMatcher trains flann::Index ).
- */
- CV_WRAP virtual void train();
- /** @brief Finds the best match for each descriptor from a query set.
- @param queryDescriptors Query set of descriptors.
- @param trainDescriptors Train set of descriptors. This set is not added to the train descriptors
- collection stored in the class object.
- @param matches Matches. If a query descriptor is masked out in mask , no match is added for this
- descriptor. So, matches size may be smaller than the query descriptors count.
- @param mask Mask specifying permissible matches between an input query and train matrices of
- descriptors.
- In the first variant of this method, the train descriptors are passed as an input argument. In the
- second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
- used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
- matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
- mask.at\<uchar\>(i,j) is non-zero.
- */
- CV_WRAP void match( InputArray queryDescriptors, InputArray trainDescriptors,
- CV_OUT std::vector<DMatch>& matches, InputArray mask=noArray() ) const;
- /** @brief Finds the k best matches for each descriptor from a query set.
- @param queryDescriptors Query set of descriptors.
- @param trainDescriptors Train set of descriptors. This set is not added to the train descriptors
- collection stored in the class object.
- @param mask Mask specifying permissible matches between an input query and train matrices of
- descriptors.
- @param matches Matches. Each matches[i] is k or less matches for the same query descriptor.
- @param k Count of best matches found per each query descriptor or less if a query descriptor has
- less than k possible matches in total.
- @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
- false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
- the matches vector does not contain matches for fully masked-out query descriptors.
- These extended variants of DescriptorMatcher::match methods find several best matches for each query
- descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match
- for the details about query and train descriptors.
- */
- CV_WRAP void knnMatch( InputArray queryDescriptors, InputArray trainDescriptors,
- CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
- InputArray mask=noArray(), bool compactResult=false ) const;
- /** @brief For each query descriptor, finds the training descriptors not farther than the specified distance.
- @param queryDescriptors Query set of descriptors.
- @param trainDescriptors Train set of descriptors. This set is not added to the train descriptors
- collection stored in the class object.
- @param matches Found matches.
- @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
- false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
- the matches vector does not contain matches for fully masked-out query descriptors.
- @param maxDistance Threshold for the distance between matched descriptors. Distance means here
- metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
- in Pixels)!
- @param mask Mask specifying permissible matches between an input query and train matrices of
- descriptors.
- For each query descriptor, the methods find such training descriptors that the distance between the
- query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
- returned in the distance increasing order.
- */
- CV_WRAP void radiusMatch( InputArray queryDescriptors, InputArray trainDescriptors,
- CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance,
- InputArray mask=noArray(), bool compactResult=false ) const;
- /** @overload
- @param queryDescriptors Query set of descriptors.
- @param matches Matches. If a query descriptor is masked out in mask , no match is added for this
- descriptor. So, matches size may be smaller than the query descriptors count.
- @param masks Set of masks. Each masks[i] specifies permissible matches between the input query
- descriptors and stored train descriptors from the i-th image trainDescCollection[i].
- */
- CV_WRAP void match( InputArray queryDescriptors, CV_OUT std::vector<DMatch>& matches,
- InputArrayOfArrays masks=noArray() );
- /** @overload
- @param queryDescriptors Query set of descriptors.
- @param matches Matches. Each matches[i] is k or less matches for the same query descriptor.
- @param k Count of best matches found per each query descriptor or less if a query descriptor has
- less than k possible matches in total.
- @param masks Set of masks. Each masks[i] specifies permissible matches between the input query
- descriptors and stored train descriptors from the i-th image trainDescCollection[i].
- @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
- false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
- the matches vector does not contain matches for fully masked-out query descriptors.
- */
- CV_WRAP void knnMatch( InputArray queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
- InputArrayOfArrays masks=noArray(), bool compactResult=false );
- /** @overload
- @param queryDescriptors Query set of descriptors.
- @param matches Found matches.
- @param maxDistance Threshold for the distance between matched descriptors. Distance means here
- metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
- in Pixels)!
- @param masks Set of masks. Each masks[i] specifies permissible matches between the input query
- descriptors and stored train descriptors from the i-th image trainDescCollection[i].
- @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
- false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
- the matches vector does not contain matches for fully masked-out query descriptors.
- */
- CV_WRAP void radiusMatch( InputArray queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance,
- InputArrayOfArrays masks=noArray(), bool compactResult=false );
- CV_WRAP void write( const String& fileName ) const
- {
- FileStorage fs(fileName, FileStorage::WRITE);
- write(fs);
- }
- CV_WRAP void read( const String& fileName )
- {
- FileStorage fs(fileName, FileStorage::READ);
- read(fs.root());
- }
- // Reads matcher object from a file node
- // see corresponding cv::Algorithm method
- CV_WRAP virtual void read( const FileNode& ) CV_OVERRIDE;
- // Writes matcher object to a file storage
- virtual void write( FileStorage& ) const CV_OVERRIDE;
- /** @brief Clones the matcher.
- @param emptyTrainData If emptyTrainData is false, the method creates a deep copy of the object,
- that is, copies both parameters and train data. If emptyTrainData is true, the method creates an
- object copy with the current parameters but with empty train data.
- */
- CV_WRAP virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;
- /** @brief Creates a descriptor matcher of a given type with the default parameters (using default
- constructor).
- @param descriptorMatcherType Descriptor matcher type. Now the following matcher types are
- supported:
- - `BruteForce` (it uses L2 )
- - `BruteForce-L1`
- - `BruteForce-Hamming`
- - `BruteForce-Hamming(2)`
- - `FlannBased`
- */
- CV_WRAP static Ptr<DescriptorMatcher> create( const String& descriptorMatcherType );
- CV_WRAP static Ptr<DescriptorMatcher> create( const DescriptorMatcher::MatcherType& matcherType );
- // see corresponding cv::Algorithm method
- CV_WRAP inline void write(const Ptr<FileStorage>& fs, const String& name = String()) const { Algorithm::write(fs, name); }
- protected:
- /**
- * Class to work with descriptors from several images as with one merged matrix.
- * It is used e.g. in FlannBasedMatcher.
- */
- class CV_EXPORTS DescriptorCollection
- {
- public:
- DescriptorCollection();
- DescriptorCollection( const DescriptorCollection& collection );
- virtual ~DescriptorCollection();
- // Vector of matrices "descriptors" will be merged to one matrix "mergedDescriptors" here.
- void set( const std::vector<Mat>& descriptors );
- virtual void clear();
- const Mat& getDescriptors() const;
- const Mat getDescriptor( int imgIdx, int localDescIdx ) const;
- const Mat getDescriptor( int globalDescIdx ) const;
- void getLocalIdx( int globalDescIdx, int& imgIdx, int& localDescIdx ) const;
- int size() const;
- protected:
- Mat mergedDescriptors;
- std::vector<int> startIdxs;
- };
- //! In fact the matching is implemented only by the following two methods. These methods suppose
- //! that the class object has been trained already. Public match methods call these methods
- //! after calling train().
- virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
- InputArrayOfArrays masks=noArray(), bool compactResult=false ) = 0;
- virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
- InputArrayOfArrays masks=noArray(), bool compactResult=false ) = 0;
- static bool isPossibleMatch( InputArray mask, int queryIdx, int trainIdx );
- static bool isMaskedOut( InputArrayOfArrays masks, int queryIdx );
- static Mat clone_op( Mat m ) { return m.clone(); }
- void checkMasks( InputArrayOfArrays masks, int queryDescriptorsCount ) const;
- //! Collection of descriptors from train images.
- std::vector<Mat> trainDescCollection;
- std::vector<UMat> utrainDescCollection;
- };
- /** @brief Brute-force descriptor matcher.
- For each descriptor in the first set, this matcher finds the closest descriptor in the second set
- by trying each one. This descriptor matcher supports masking permissible matches of descriptor
- sets.
- */
- class CV_EXPORTS_W BFMatcher : public DescriptorMatcher
- {
- public:
- /** @brief Brute-force matcher constructor (obsolete). Please use BFMatcher.create()
- *
- *
- */
- CV_WRAP BFMatcher( int normType=NORM_L2, bool crossCheck=false );
- virtual ~BFMatcher() {}
- virtual bool isMaskSupported() const CV_OVERRIDE { return true; }
- /** @brief Brute-force matcher create method.
- @param normType One of NORM_L1, NORM_L2, NORM_HAMMING, NORM_HAMMING2. L1 and L2 norms are
- preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and
- BRIEF, NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4 (see ORB::ORB constructor
- description).
- @param crossCheck If it is false, this is will be default BFMatcher behaviour when it finds the k
- nearest neighbors for each query descriptor. If crossCheck==true, then the knnMatch() method with
- k=1 will only return pairs (i,j) such that for i-th query descriptor the j-th descriptor in the
- matcher's collection is the nearest and vice versa, i.e. the BFMatcher will only return consistent
- pairs. Such technique usually produces best results with minimal number of outliers when there are
- enough matches. This is alternative to the ratio test, used by D. Lowe in SIFT paper.
- */
- CV_WRAP static Ptr<BFMatcher> create( int normType=NORM_L2, bool crossCheck=false ) ;
- virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const CV_OVERRIDE;
- protected:
- virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
- InputArrayOfArrays masks=noArray(), bool compactResult=false ) CV_OVERRIDE;
- virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
- InputArrayOfArrays masks=noArray(), bool compactResult=false ) CV_OVERRIDE;
- int normType;
- bool crossCheck;
- };
- #if defined(HAVE_OPENCV_FLANN) || defined(CV_DOXYGEN)
- /** @brief Flann-based descriptor matcher.
- This matcher trains cv::flann::Index on a train descriptor collection and calls its nearest search
- methods to find the best matches. So, this matcher may be faster when matching a large train
- collection than the brute force matcher. FlannBasedMatcher does not support masking permissible
- matches of descriptor sets because flann::Index does not support this. :
- */
- class CV_EXPORTS_W FlannBasedMatcher : public DescriptorMatcher
- {
- public:
- CV_WRAP FlannBasedMatcher( const Ptr<flann::IndexParams>& indexParams=makePtr<flann::KDTreeIndexParams>(),
- const Ptr<flann::SearchParams>& searchParams=makePtr<flann::SearchParams>() );
- virtual void add( InputArrayOfArrays descriptors ) CV_OVERRIDE;
- virtual void clear() CV_OVERRIDE;
- // Reads matcher object from a file node
- virtual void read( const FileNode& ) CV_OVERRIDE;
- // Writes matcher object to a file storage
- virtual void write( FileStorage& ) const CV_OVERRIDE;
- virtual void train() CV_OVERRIDE;
- virtual bool isMaskSupported() const CV_OVERRIDE;
- CV_WRAP static Ptr<FlannBasedMatcher> create();
- virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const CV_OVERRIDE;
- protected:
- static void convertToDMatches( const DescriptorCollection& descriptors,
- const Mat& indices, const Mat& distances,
- std::vector<std::vector<DMatch> >& matches );
- virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
- InputArrayOfArrays masks=noArray(), bool compactResult=false ) CV_OVERRIDE;
- virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
- InputArrayOfArrays masks=noArray(), bool compactResult=false ) CV_OVERRIDE;
- Ptr<flann::IndexParams> indexParams;
- Ptr<flann::SearchParams> searchParams;
- Ptr<flann::Index> flannIndex;
- DescriptorCollection mergedDescriptors;
- int addedDescCount;
- };
- #endif
- //! @} features2d_match
- /****************************************************************************************\
- * Drawing functions *
- \****************************************************************************************/
- //! @addtogroup features2d_draw
- //! @{
- enum struct DrawMatchesFlags
- {
- DEFAULT = 0, //!< Output image matrix will be created (Mat::create),
- //!< i.e. existing memory of output image may be reused.
- //!< Two source image, matches and single keypoints will be drawn.
- //!< For each keypoint only the center point will be drawn (without
- //!< the circle around keypoint with keypoint size and orientation).
- DRAW_OVER_OUTIMG = 1, //!< Output image matrix will not be created (Mat::create).
- //!< Matches will be drawn on existing content of output image.
- NOT_DRAW_SINGLE_POINTS = 2, //!< Single keypoints will not be drawn.
- DRAW_RICH_KEYPOINTS = 4 //!< For each keypoint the circle around keypoint with keypoint size and
- //!< orientation will be drawn.
- };
- CV_ENUM_FLAGS(DrawMatchesFlags)
- /** @brief Draws keypoints.
- @param image Source image.
- @param keypoints Keypoints from the source image.
- @param outImage Output image. Its content depends on the flags value defining what is drawn in the
- output image. See possible flags bit values below.
- @param color Color of keypoints.
- @param flags Flags setting drawing features. Possible flags bit values are defined by
- DrawMatchesFlags. See details above in drawMatches .
- @note
- For Python API, flags are modified as cv.DRAW_MATCHES_FLAGS_DEFAULT,
- cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS, cv.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG,
- cv.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS
- */
- CV_EXPORTS_W void drawKeypoints( InputArray image, const std::vector<KeyPoint>& keypoints, InputOutputArray outImage,
- const Scalar& color=Scalar::all(-1), DrawMatchesFlags flags=DrawMatchesFlags::DEFAULT );
- /** @brief Draws the found matches of keypoints from two images.
- @param img1 First source image.
- @param keypoints1 Keypoints from the first source image.
- @param img2 Second source image.
- @param keypoints2 Keypoints from the second source image.
- @param matches1to2 Matches from the first image to the second one, which means that keypoints1[i]
- has a corresponding point in keypoints2[matches[i]] .
- @param outImg Output image. Its content depends on the flags value defining what is drawn in the
- output image. See possible flags bit values below.
- @param matchColor Color of matches (lines and connected keypoints). If matchColor==Scalar::all(-1)
- , the color is generated randomly.
- @param singlePointColor Color of single keypoints (circles), which means that keypoints do not
- have the matches. If singlePointColor==Scalar::all(-1) , the color is generated randomly.
- @param matchesMask Mask determining which matches are drawn. If the mask is empty, all matches are
- drawn.
- @param flags Flags setting drawing features. Possible flags bit values are defined by
- DrawMatchesFlags.
- This function draws matches of keypoints from two images in the output image. Match is a line
- connecting two keypoints (circles). See cv::DrawMatchesFlags.
- */
- CV_EXPORTS_W void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1,
- InputArray img2, const std::vector<KeyPoint>& keypoints2,
- const std::vector<DMatch>& matches1to2, InputOutputArray outImg,
- const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
- const std::vector<char>& matchesMask=std::vector<char>(), DrawMatchesFlags flags=DrawMatchesFlags::DEFAULT );
- /** @overload */
- CV_EXPORTS_AS(drawMatchesKnn) void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1,
- InputArray img2, const std::vector<KeyPoint>& keypoints2,
- const std::vector<std::vector<DMatch> >& matches1to2, InputOutputArray outImg,
- const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
- const std::vector<std::vector<char> >& matchesMask=std::vector<std::vector<char> >(), DrawMatchesFlags flags=DrawMatchesFlags::DEFAULT );
- //! @} features2d_draw
- /****************************************************************************************\
- * Functions to evaluate the feature detectors and [generic] descriptor extractors *
- \****************************************************************************************/
- CV_EXPORTS void evaluateFeatureDetector( const Mat& img1, const Mat& img2, const Mat& H1to2,
- std::vector<KeyPoint>* keypoints1, std::vector<KeyPoint>* keypoints2,
- float& repeatability, int& correspCount,
- const Ptr<FeatureDetector>& fdetector=Ptr<FeatureDetector>() );
- CV_EXPORTS void computeRecallPrecisionCurve( const std::vector<std::vector<DMatch> >& matches1to2,
- const std::vector<std::vector<uchar> >& correctMatches1to2Mask,
- std::vector<Point2f>& recallPrecisionCurve );
- CV_EXPORTS float getRecall( const std::vector<Point2f>& recallPrecisionCurve, float l_precision );
- CV_EXPORTS int getNearestPoint( const std::vector<Point2f>& recallPrecisionCurve, float l_precision );
- /****************************************************************************************\
- * Bag of visual words *
- \****************************************************************************************/
- //! @addtogroup features2d_category
- //! @{
- /** @brief Abstract base class for training the *bag of visual words* vocabulary from a set of descriptors.
- For details, see, for example, *Visual Categorization with Bags of Keypoints* by Gabriella Csurka,
- Christopher R. Dance, Lixin Fan, Jutta Willamowski, Cedric Bray, 2004. :
- */
- class CV_EXPORTS_W BOWTrainer
- {
- public:
- BOWTrainer();
- virtual ~BOWTrainer();
- /** @brief Adds descriptors to a training set.
- @param descriptors Descriptors to add to a training set. Each row of the descriptors matrix is a
- descriptor.
- The training set is clustered using clustermethod to construct the vocabulary.
- */
- CV_WRAP void add( const Mat& descriptors );
- /** @brief Returns a training set of descriptors.
- */
- CV_WRAP const std::vector<Mat>& getDescriptors() const;
- /** @brief Returns the count of all descriptors stored in the training set.
- */
- CV_WRAP int descriptorsCount() const;
- CV_WRAP virtual void clear();
- /** @overload */
- CV_WRAP virtual Mat cluster() const = 0;
- /** @brief Clusters train descriptors.
- @param descriptors Descriptors to cluster. Each row of the descriptors matrix is a descriptor.
- Descriptors are not added to the inner train descriptor set.
- The vocabulary consists of cluster centers. So, this method returns the vocabulary. In the first
- variant of the method, train descriptors stored in the object are clustered. In the second variant,
- input descriptors are clustered.
- */
- CV_WRAP virtual Mat cluster( const Mat& descriptors ) const = 0;
- protected:
- std::vector<Mat> descriptors;
- int size;
- };
- /** @brief kmeans -based class to train visual vocabulary using the *bag of visual words* approach. :
- */
- class CV_EXPORTS_W BOWKMeansTrainer : public BOWTrainer
- {
- public:
- /** @brief The constructor.
- @see cv::kmeans
- */
- CV_WRAP BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(),
- int attempts=3, int flags=KMEANS_PP_CENTERS );
- virtual ~BOWKMeansTrainer();
- // Returns trained vocabulary (i.e. cluster centers).
- CV_WRAP virtual Mat cluster() const CV_OVERRIDE;
- CV_WRAP virtual Mat cluster( const Mat& descriptors ) const CV_OVERRIDE;
- protected:
- int clusterCount;
- TermCriteria termcrit;
- int attempts;
- int flags;
- };
- /** @brief Class to compute an image descriptor using the *bag of visual words*.
- Such a computation consists of the following steps:
- 1. Compute descriptors for a given image and its keypoints set.
- 2. Find the nearest visual words from the vocabulary for each keypoint descriptor.
- 3. Compute the bag-of-words image descriptor as is a normalized histogram of vocabulary words
- encountered in the image. The i-th bin of the histogram is a frequency of i-th word of the
- vocabulary in the given image.
- */
- class CV_EXPORTS_W BOWImgDescriptorExtractor
- {
- public:
- /** @brief The constructor.
- @param dextractor Descriptor extractor that is used to compute descriptors for an input image and
- its keypoints.
- @param dmatcher Descriptor matcher that is used to find the nearest word of the trained vocabulary
- for each keypoint descriptor of the image.
- */
- CV_WRAP BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor,
- const Ptr<DescriptorMatcher>& dmatcher );
- /** @overload */
- BOWImgDescriptorExtractor( const Ptr<DescriptorMatcher>& dmatcher );
- virtual ~BOWImgDescriptorExtractor();
- /** @brief Sets a visual vocabulary.
- @param vocabulary Vocabulary (can be trained using the inheritor of BOWTrainer ). Each row of the
- vocabulary is a visual word (cluster center).
- */
- CV_WRAP void setVocabulary( const Mat& vocabulary );
- /** @brief Returns the set vocabulary.
- */
- CV_WRAP const Mat& getVocabulary() const;
- /** @brief Computes an image descriptor using the set visual vocabulary.
- @param image Image, for which the descriptor is computed.
- @param keypoints Keypoints detected in the input image.
- @param imgDescriptor Computed output image descriptor.
- @param pointIdxsOfClusters Indices of keypoints that belong to the cluster. This means that
- pointIdxsOfClusters[i] are keypoint indices that belong to the i -th cluster (word of vocabulary)
- returned if it is non-zero.
- @param descriptors Descriptors of the image keypoints that are returned if they are non-zero.
- */
- void compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray imgDescriptor,
- std::vector<std::vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 );
- /** @overload
- @param keypointDescriptors Computed descriptors to match with vocabulary.
- @param imgDescriptor Computed output image descriptor.
- @param pointIdxsOfClusters Indices of keypoints that belong to the cluster. This means that
- pointIdxsOfClusters[i] are keypoint indices that belong to the i -th cluster (word of vocabulary)
- returned if it is non-zero.
- */
- void compute( InputArray keypointDescriptors, OutputArray imgDescriptor,
- std::vector<std::vector<int> >* pointIdxsOfClusters=0 );
- // compute() is not constant because DescriptorMatcher::match is not constant
- CV_WRAP_AS(compute) void compute2( const Mat& image, std::vector<KeyPoint>& keypoints, CV_OUT Mat& imgDescriptor )
- { compute(image,keypoints,imgDescriptor); }
- /** @brief Returns an image descriptor size if the vocabulary is set. Otherwise, it returns 0.
- */
- CV_WRAP int descriptorSize() const;
- /** @brief Returns an image descriptor type.
- */
- CV_WRAP int descriptorType() const;
- protected:
- Mat vocabulary;
- Ptr<DescriptorExtractor> dextractor;
- Ptr<DescriptorMatcher> dmatcher;
- };
- //! @} features2d_category
- //! @} features2d
- } /* namespace cv */
- #endif
|