123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef OPENCV_SHAPE_SHAPE_DISTANCE_HPP
- #define OPENCV_SHAPE_SHAPE_DISTANCE_HPP
- #include "opencv2/core.hpp"
- #include "opencv2/shape/hist_cost.hpp"
- #include "opencv2/shape/shape_transformer.hpp"
- namespace cv
- {
- //! @addtogroup shape
- //! @{
- /** @example samples/cpp/shape_example.cpp
- An example using shape distance algorithm
- */
- /** @brief Abstract base class for shape distance algorithms.
- */
- class CV_EXPORTS_W ShapeDistanceExtractor : public Algorithm
- {
- public:
- /** @brief Compute the shape distance between two shapes defined by its contours.
- @param contour1 Contour defining first shape.
- @param contour2 Contour defining second shape.
- */
- CV_WRAP virtual float computeDistance(InputArray contour1, InputArray contour2) = 0;
- };
- /***********************************************************************************/
- /***********************************************************************************/
- /***********************************************************************************/
- /** @brief Implementation of the Shape Context descriptor and matching algorithm
- proposed by Belongie et al. in "Shape Matching and Object Recognition Using Shape Contexts" (PAMI
- 2002). This implementation is packaged in a generic scheme, in order to allow you the
- implementation of the common variations of the original pipeline.
- */
- class CV_EXPORTS_W ShapeContextDistanceExtractor : public ShapeDistanceExtractor
- {
- public:
- /** @brief Establish the number of angular bins for the Shape Context Descriptor used in the shape matching
- pipeline.
- @param nAngularBins The number of angular bins in the shape context descriptor.
- */
- CV_WRAP virtual void setAngularBins(int nAngularBins) = 0;
- CV_WRAP virtual int getAngularBins() const = 0;
- /** @brief Establish the number of radial bins for the Shape Context Descriptor used in the shape matching
- pipeline.
- @param nRadialBins The number of radial bins in the shape context descriptor.
- */
- CV_WRAP virtual void setRadialBins(int nRadialBins) = 0;
- CV_WRAP virtual int getRadialBins() const = 0;
- /** @brief Set the inner radius of the shape context descriptor.
- @param innerRadius The value of the inner radius.
- */
- CV_WRAP virtual void setInnerRadius(float innerRadius) = 0;
- CV_WRAP virtual float getInnerRadius() const = 0;
- /** @brief Set the outer radius of the shape context descriptor.
- @param outerRadius The value of the outer radius.
- */
- CV_WRAP virtual void setOuterRadius(float outerRadius) = 0;
- CV_WRAP virtual float getOuterRadius() const = 0;
- CV_WRAP virtual void setRotationInvariant(bool rotationInvariant) = 0;
- CV_WRAP virtual bool getRotationInvariant() const = 0;
- /** @brief Set the weight of the shape context distance in the final value of the shape distance. The shape
- context distance between two shapes is defined as the symmetric sum of shape context matching costs
- over best matching points. The final value of the shape distance is a user-defined linear
- combination of the shape context distance, an image appearance distance, and a bending energy.
- @param shapeContextWeight The weight of the shape context distance in the final distance value.
- */
- CV_WRAP virtual void setShapeContextWeight(float shapeContextWeight) = 0;
- CV_WRAP virtual float getShapeContextWeight() const = 0;
- /** @brief Set the weight of the Image Appearance cost in the final value of the shape distance. The image
- appearance cost is defined as the sum of squared brightness differences in Gaussian windows around
- corresponding image points. The final value of the shape distance is a user-defined linear
- combination of the shape context distance, an image appearance distance, and a bending energy. If
- this value is set to a number different from 0, is mandatory to set the images that correspond to
- each shape.
- @param imageAppearanceWeight The weight of the appearance cost in the final distance value.
- */
- CV_WRAP virtual void setImageAppearanceWeight(float imageAppearanceWeight) = 0;
- CV_WRAP virtual float getImageAppearanceWeight() const = 0;
- /** @brief Set the weight of the Bending Energy in the final value of the shape distance. The bending energy
- definition depends on what transformation is being used to align the shapes. The final value of the
- shape distance is a user-defined linear combination of the shape context distance, an image
- appearance distance, and a bending energy.
- @param bendingEnergyWeight The weight of the Bending Energy in the final distance value.
- */
- CV_WRAP virtual void setBendingEnergyWeight(float bendingEnergyWeight) = 0;
- CV_WRAP virtual float getBendingEnergyWeight() const = 0;
- /** @brief Set the images that correspond to each shape. This images are used in the calculation of the Image
- Appearance cost.
- @param image1 Image corresponding to the shape defined by contours1.
- @param image2 Image corresponding to the shape defined by contours2.
- */
- CV_WRAP virtual void setImages(InputArray image1, InputArray image2) = 0;
- CV_WRAP virtual void getImages(OutputArray image1, OutputArray image2) const = 0;
- CV_WRAP virtual void setIterations(int iterations) = 0;
- CV_WRAP virtual int getIterations() const = 0;
- /** @brief Set the algorithm used for building the shape context descriptor cost matrix.
- @param comparer Smart pointer to a HistogramCostExtractor, an algorithm that defines the cost
- matrix between descriptors.
- */
- CV_WRAP virtual void setCostExtractor(Ptr<HistogramCostExtractor> comparer) = 0;
- CV_WRAP virtual Ptr<HistogramCostExtractor> getCostExtractor() const = 0;
- /** @brief Set the value of the standard deviation for the Gaussian window for the image appearance cost.
- @param sigma Standard Deviation.
- */
- CV_WRAP virtual void setStdDev(float sigma) = 0;
- CV_WRAP virtual float getStdDev() const = 0;
- /** @brief Set the algorithm used for aligning the shapes.
- @param transformer Smart pointer to a ShapeTransformer, an algorithm that defines the aligning
- transformation.
- */
- CV_WRAP virtual void setTransformAlgorithm(Ptr<ShapeTransformer> transformer) = 0;
- CV_WRAP virtual Ptr<ShapeTransformer> getTransformAlgorithm() const = 0;
- };
- /* Complete constructor */
- CV_EXPORTS_W Ptr<ShapeContextDistanceExtractor>
- createShapeContextDistanceExtractor(int nAngularBins=12, int nRadialBins=4,
- float innerRadius=0.2f, float outerRadius=2, int iterations=3,
- const Ptr<HistogramCostExtractor> &comparer = createChiHistogramCostExtractor(),
- const Ptr<ShapeTransformer> &transformer = createThinPlateSplineShapeTransformer());
- /***********************************************************************************/
- /***********************************************************************************/
- /***********************************************************************************/
- /** @brief A simple Hausdorff distance measure between shapes defined by contours
- according to the paper "Comparing Images using the Hausdorff distance." by D.P. Huttenlocher, G.A.
- Klanderman, and W.J. Rucklidge. (PAMI 1993). :
- */
- class CV_EXPORTS_W HausdorffDistanceExtractor : public ShapeDistanceExtractor
- {
- public:
- /** @brief Set the norm used to compute the Hausdorff value between two shapes. It can be L1 or L2 norm.
- @param distanceFlag Flag indicating which norm is used to compute the Hausdorff distance
- (NORM_L1, NORM_L2).
- */
- CV_WRAP virtual void setDistanceFlag(int distanceFlag) = 0;
- CV_WRAP virtual int getDistanceFlag() const = 0;
- /** @brief This method sets the rank proportion (or fractional value) that establish the Kth ranked value of
- the partial Hausdorff distance. Experimentally had been shown that 0.6 is a good value to compare
- shapes.
- @param rankProportion fractional value (between 0 and 1).
- */
- CV_WRAP virtual void setRankProportion(float rankProportion) = 0;
- CV_WRAP virtual float getRankProportion() const = 0;
- };
- /* Constructor */
- CV_EXPORTS_W Ptr<HausdorffDistanceExtractor> createHausdorffDistanceExtractor(int distanceFlag=cv::NORM_L2, float rankProp=0.6f);
- //! @}
- } // cv
- #endif
|